Integer Sequences Connected with Extensions of the Bell Polynomials
نویسندگان
چکیده
The Encyclopedia of Integer Sequences includes some sequences that are connected with the Bell numbers and that have a particular combinatorial meaning. In this article, we find a general meaning for framing sequences, including the above mentioned ones. Furthermore, by using Laguerre-type derivatives, we derive the Laguerre-type Bell numbers of higher order, showing, as a by-product, that it is possible to construct new integer sequences which are not included in the Encyclopedia.
منابع مشابه
Linear Recurrence Sequences and Their Convolutions via Bell Polynomials
We recast homogeneous linear recurrence sequences with fixed coefficients in terms of partial Bell polynomials, and use their properties to obtain various combinatorial identities and multifold convolution formulas. Our approach relies on a basis of sequences that can be obtained as the INVERT transform of the coefficients of the given recurrence relation. For such a basis sequence with generat...
متن کاملNumerical solution of nonlinear Fredholm-Volterra integral equations via Bell polynomials
In this paper, we propose and analyze an efficient matrix method based on Bell polynomials for numerically solving nonlinear Fredholm- Volterra integral equations. For this aim, first we calculate operational matrix of integration and product based on Bell polynomials. By using these matrices, nonlinear Fredholm-Volterra integral equations reduce to the system of nonlinear algebraic equations w...
متن کاملCharacterization of (c)-Riordan Arrays, Gegenbauer-Humbert-type polynomial sequences, and (c)-Bell polynomials
Here presented are the definitions of (c)-Riordan arrays and (c)-Bell polynomials which are extensions of the classical Riordan arrays and Bell polynomials. The characterization of (c)-Riordan arrays by means of the Aand Z-sequences is given, which corresponds to a horizontal construction of a (c)Riordan array rather than its definition approach through column generating functions. There exists...
متن کاملLinear Recurrences for r-Bell Polynomials
Letting Bn,r be the n-th r-Bell polynomial, it is well known that Bn(x) admits specific integer coordinates in the two bases {x}i and {xBi(x)}i according to, respectively, the Stirling numbers and the binomial coefficients. Our aim is to prove that the sequences Bn+m,r(x) and Bn,r+s(x) admit a binomial recurrence coefficient in different bases of the Q-vector space formed by polynomials of Q[X].
متن کاملStirling number of the fourth kind and lucky partitions of a finite set
The concept of Lucky k-polynomials and in particular Lucky χ-polynomials was recently introduced. This paper introduces Stirling number of the fourth kind and Lucky partitions of a finite set in order to determine either the Lucky k- or Lucky χ-polynomial of a graph. The integer partitions influence Stirling partitions of the second kind.
متن کامل